

Daily Tutorial Sheet-2	Level-1
1	

16.(C)
$$C_{\text{(diamond)}} \longrightarrow C_{\text{(graphite)}} \Delta H = -2 \text{ kJ}$$

$$C_{(graphite)} \longrightarrow C_{(g)} \Delta H = 725 \text{ kJ}$$

$$C_{\text{(diamond)}} \longrightarrow C_{\text{(g)}} \Delta H = 723 \text{ kJ}$$

17.(C) By definition

18.(B) BaCl · 2H₂O + aq
$$\longrightarrow$$
 BaCl₂(aq) Δ H₁ = 200 kJ mol⁻¹ (i)

$$BaCl_2 + aq \longrightarrow BaCl_2 \cdot 2H_2O \quad \Delta H_2 = -150 \text{ kJ mol}^{-1} \quad$$
 (ii)

Adding equation (i) and (ii)

$$\Delta H_3 = \Delta H_1 + \Delta H_2$$

$$BaCl_2 + aq \longrightarrow BaCl_2(aq)$$

Heat of solution of $BaCl_2 = 200 + (-500) = 50 \text{ kJ}$

19.(C) O_2 is present in its standard state.

20.(B)
$$\Delta H = \frac{\text{Heat released}}{\text{male}}$$

78g of $X \longrightarrow 1$ mole

1g of X
$$\longrightarrow \frac{1}{78} = 0.0128$$
 mole

$$\Delta H_{fusion} = \frac{160}{1000 \times 0.0128} = 12.48 \, \text{kJ/mol}$$

21.(C) Fact

Bond dissociation energy in polyatomic molecule is average of all bond energies. But in diatomic molecule dissociation energy in equal to bond energy.

22.(D)
$$C(g) + O_2 \longrightarrow CO_2(g); \Delta H = -y$$

$$C(d) \longrightarrow C(g); \Delta H = -1.89 \text{ kJ}$$

Adding equations (i) and (ii), we get:

$$C(g) + C(d) + O_2 \longrightarrow CO_2 + C(g); \Delta H = -y + 1.89 \text{ kJ} \quad \text{or} \quad C(d) + O_2 \longrightarrow CO_2; \Delta H = -y + 1.89 \text{ kJ}$$

Hence, the combustion of graphite is less than diamond by 0.945 kJ.

23.(D) Graphite is a standard state of carbon and CH₃OH in liquid state is also standard state.

24.(C)
$$I(g) + Cl(g) \longrightarrow ICl(g)$$

$$\Delta H_f$$
 (ICl) = 17.57 J / mol

$$121.34 + 106.96 - (I - Cl) = 17.57$$

$$121.34 + 106.96 - 17.57 = (I - C1)$$

Bond dissociation (I-C1) bond = 210.73 J / mol

- **25.(B)** By definition
- **26.(A)** In formation of $H_2O(g)$, some energy is required to convert $H_2O(l)$ into $H_2O(g)$, so less energy is released in the formation of $H_2O(g)$.

$$\therefore \Delta H_2 > \Delta H_1$$

- **27.(C)** 10 m mole NH₄OH + 10 m mole HCl \Rightarrow x kJ heat is released
 - \therefore For 1 mole \Rightarrow 100 x kJ heat is released
 - $\therefore \Delta H = -100x \text{ kJ/mol}$

For 1 mole NaOH + 1 mole HCl, $\Delta H = y \, kJ \, / \, mol$ \therefore Heat of dissociation of $NH_4OH = -100x - y$

- **28.(C)** The heat of neutralisation of strong acid and strong base is constant because it is infact heat of formation of water by H^+ and OH^- . Its value is almost equal to -57.3~kJ.
- **29.(A)** HCl is more stable than HF.
- **30.(C)** Standard heat of formation of substance is the amount of heat evolved or absorbed when one mole of substance is formed from its elements in their standard states.
 - \because Graphite is the standard state of carbon and hydrogen is found in form of H_2 .
 - \therefore Standard heat of formation of methane is $C(graphite) + 2H_2(g) \longrightarrow CH_4(g)$

VMC | Chemistry 10 Thermochemistry